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ABSTRACT
1. Infrared thermography (IRT) involves the precise measurement of infrared radiation
which allows surface temperature to be determined according to simple physical laws. This
review describes previous applications of IRT in studies of thermal physiology, veterinary
diagnosis of disease or injury and population surveys on domestic and wild mammals.
2. IRT is a useful technique because it is non-invasive and measurements can be made at
distances of <1 m to examine specific sites of heat loss to >1000 m to count large mammals.
Detailed measurements of surface temperature variation can be made where large numbers of
temperature sensors would otherwise be required and where conventional solid sensors can
give false readings on mammal coats. Studies need to take into account sources of error due
to variation in emissivity, evaporative cooling and radiative heating of the coat.
3. Recent advances in thermal imaging technology have produced lightweight, portable
systems that store digital images with high temperature and spatial resolution. For these
reasons, there are many further opportunities for IRT in studies of captive and wild mammals.
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INTRODUCTION
Infrared thermography (IRT) involves the precise measurement of infrared radiation emitted
by an object, which allows the surface temperature to be determined according to relatively
simple physical laws and known properties of the surface (see Speakman & Ward, 1998).
Specialized thermographic cameras produce images that show the variation in temperature of
a surface by representing different temperatures with a grey or coloured shaded scale (Fig. 1).
Although thermal imaging was developed principally for industrial, medical and military
applications (Burnay, Williams & Jones, 1988), it has been used to study many animal groups
including insects, reptiles, birds and mammals (see McCafferty et al., 1998).

Infrared thermography can examine many different aspects of thermal physiology, diag-
nose injury and disease and is a useful technique for counting animal populations. The great
advantage of IRT in animal research is that measurements can be made without touching or
disturbing the animal and depending on the instrument type and application, measurements
can be made either at close range (<1 m) or at large distances (>1000 m). Detailed measure-
ments of the temperature variation of mammals can be made where large numbers of
temperature sensors would otherwise be required. Conventional solid probes can also give
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false readings due to the difference in heat capacity between sensor and coat or through
disruption of the hair fibres by sensors (Cena, 1974; Mohler & Heath, 1988). Previously, Cena
& Clark (1973) outlined important theoretical aspects of this technique for research on
domestic and zoo animals, Yang & Yang (1992) reviewed biomedical and veterinary appli-
cations and Speakman & Ward (1998) gave an account of the principles of IRT and dem-
onstrated its usefulness for studying thermoregulation. More recently, Kastberger & Stachl
(2003) highlighted several interesting veterinary and physiological applications.
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Fig. 1. Photograph (a) of Grant’s
zebra Equus burchelli boehmi with
corresponding infrared image (b) in
full sun. The temperature profile L1
displayed in the graph below (c)
shows the variation in temperature
across the body, with black stripes
more than 10 °C warmer than white
striped areas of the coat. Mean air
temperature = 28.3 °C, relative
humidity = 44%, solar
radiation = 860 Wm-2 and wind
speed = 0.3 ms-1.
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The aim of this review was to examine the value of thermal imaging for research on
non-human mammals. In particular, this paper brings together findings from physiological,
ecological and veterinary investigations to generate new ideas on how to use IRT to inves-
tigate wild mammal populations. This review is timely given recent advances in thermal
imaging technology and a reduction in the cost of these devices, both of which will provide
future research opportunities.

APPLICATIONS
For this review, a literature search was undertaken using ISI Web of KnowledgeSM (http://
wok.mimas.ac.uk/). This was followed by compiling a reference list from each of these papers
to include older studies that may not have been listed in current electronic databases and
supplementing these with other known studies. This is therefore not an exhaustive list as this
is a widely used technique, but it is likely to cover a large proportion of the main empirical
studies to date. For the purposes of this review, studies on humans and closely related clinical
applications were not considered.

Seventy-one empirical studies using IRT on mammals since 1968 (Tables 1–3) were exam-
ined. These studies involved domestic and wild mammals from 11 mammalian orders. Two-
thirds of the studies involved terrestrial species and a third were on aquatic mammals, mostly
marine species. These included 34 studies on thermal physiology (48%), 19 involving veteri-
nary diagnosis of disease and injury (27%) and 18 population surveys (25%). Seventy per cent
of studies were on captive mammals.

Thermal physiology
Infrared thermography has been used to examine many different aspects of thermoregulation
(Table 1) and much of this work has focused on identifying parts of the body with relatively
high temperature which can be related to an animal’s anatomy and physiology. This has
signaled that the head is a major source of heat loss for most species of mammals and also
identified the importance of appendages in controlling heat loss. These studies demonstrate
the clear link between surface temperature and underlying blood circulation and brown
adipose tissue, as well as the role of fur in reducing heat loss from the skin surface. Many
studies have examined the relationship between body surface temperature and air tempera-
ture. However, a novel approach with IRT has been to examine the relationship between
environmental temperature and the sensitivity of vibrissal follicles in seals and dolphins
(Dehnhardt, Mauck & Hyvärinen, 1998; Mauck, Eysel & Dehnhardt, 2000). These studies
demonstrated that even in the cold, blood is circulated to these areas to maintain the function
of these essential sensory organs.

A major strength of IRT is its ability to relate changes in surface temperature to particular
physiological states or associated with certain behaviours such as huddling or vocalization.
Recent studies have also shown that IRT is capable of detecting surface temperature changes
in response not only to physical activity but also to fear. Particularly significant were the
findings of Nakayama et al. (2005) which showed that changes in facial surface temperature
patterns of Rhesus monkeys Macaca mulatta occurred in response to the threat of capture.
IRT is particularly suited to examining changes in surface temperature during activities such
as running, flying and even swimming. The latter application on marine mammals was an
interesting applied study to examine the significance of changes in circulation associated with
exercise in dolphins when chased and captured in the Pacific tuna fishery (Pabst et al., 2002).
This study found that dolphins increased their rate of heat dissipation from dorsal fins to the
environment from the start of the chase. During prolonged chases, animals had higher skin
surface temperatures, presumably as a result of greater blood flow to these areas.
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Thermal imaging is also a useful tool for refining research methods, for example as a guide
for the placement of heat flux sensors to study metabolic heat production of Steller sea lions
Eumetopias jubatus (Willis et al., 2005) and to determine the effects of attaching bio-logging
devices to the pelage of grey seals Halichoerus grypus (McCafferty, Currie & Sparling, 2007).

Veterinary diagnosis of disease and injury
Infrared thermography has largely been a diagnostic tool in veterinary science in combination
with other indicators of disease. A major application of this technique has been to diagnose
injury and disease in horses and there have been several useful studies detailing factors
influencing normal temperature distributions and outlining appropriate measurement proto-
cols (see review by Eddy et al., 2001). Abnormal or asymmetrical temperature distributions
have been used as indicators of underlying problems with blood circulation or inflammatory
responses (Table 2).

The non-invasive nature of IRT makes it particularly suited for studying farm animal
welfare (see review by Stewart et al., 2005). Studies have examined the extent and duration of
inflammation observed on branding sites, effects of antler removal, changes in the thermal
status of cattle during transportation, detecting hoof disorders and rises in body temperatures
due to infection. An interesting veterinary application has been to detect estrus in cows by
examining temperature distribution of the gluteal region. In this case, IRT was more effective
than experienced dairy staff in detecting estrus in early stages but was less accurate in later
postpartum due to a greater number of false positives (Hurnik, Webster & DeBoer, 1985).

Thermal imaging on captive species other than horses and cattle is less common, although
Kouba & Willard (2005) reported anecdotally how IRT was being used to monitor a range of
illnesses in zoo species. One of the first attempts to use IRT to detect disease in a wild
mammal population was undertaken to diagnose sarcoptic mange in wild Spanish ibex Capra
pyrenaica. Unfortunately, this was found to be not as affective as visual observation due to
the limitations of the thermal imaging system used for distances greater than 100 m (Arenas
et al., 2002).

Population surveys
A variety of thermal imaging devices have been used from aircraft or road vehicles to detect
and/or count large mammals (Table 3). This application does not require precise temperature
measurements but simply detects individuals or dens by a warm signal against a cool back-
ground. IRT has been used in this way for counts of deer and pinnipeds. Thermal imaging has
also been able to detect the blows of large whales. For example, a remotely operated thermal
imaging system from a shore based station was used to count Pacific grey whales Eschrichtius
robustus over a period of a month and across three years. Numbers of whales were detected
from their blows and showed that migration rates were greater during the night than through-
out the day (Perryman et al., 1999). Although IRT was also found to be effective in detecting
relatively small mammals, transect surveys on foot with handheld infrared cameras have been
less commonly used in the past, most probably limited by the relatively large size of imaging
systems. More recently, counts of grey bats Myotis grisescens using IRT have produced
colony estimates similar to those counted visually and have opened up possibilities of using
automated systems for monitoring purposes (Sabol & Hudson, 1995).

These studies demonstrate the usefulness of using thermal imaging to survey remote
geographical areas. Similar to conventional aerial photography, thermal imaging from aircraft
can be hindered by cloud cover since infrared radiation is absorbed by water vapour. The
success of the technique relies on a relatively large temperature difference between the study
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animal and the ground surface. This is dependent on the temperature of the ground surface and
the insulation properties of the animal. Surveys using IRT are therefore often undertaken at
night when the thermal contrast between animal and background is greatest. Animals living in
open habitats such as coastal areas or areas with sparse vegetation are suited to aerial survey
methods compared to forest dwelling species. The usefulness for population monitoring relies
on being able to ground-truth thermal imaging counts with visual counts and to choose periods
of the day or season of the year when animals can be most easily detected.

INTERPRETATION OF THERMAL IMAGES
For some applications, such as population counts, accurate temperature measurements of
detected animals are not required. However, for the study of thermal physiology and ener-
getics, the infrared radiation detected by the equipment must be converted to an accurate
estimate of surface temperature. Infrared radiation emitted by bare-skinned animals is gov-
erned by the skin surface temperature but the radiation emitted from most mammals may
originate either from the skin, if this is incompletely obscured by hairs, or from the hairs
themselves. The radiating surfaces of the hairs are at a range of temperatures determined by
the temperature gradient between the skin and the coat surface. The exchange of radiation
may be further complicated by external fluxes that contribute to the heat balance of the hairs.
For an animal with thick fur, the surface temperature measured by IRT is typically several
millimeters beneath the physical surface of the coat. The equilibrium temperature of this
surface is determined by the loss of heat from radiation and convection to the surroundings,
the conduction of heat through the coat and the exchange of thermal and short wave
radiation (Cena, 1974). The radiative environment in which measurements are carried out is
therefore important because of its influence on coat temperature. It has been clearly shown
that different coloured coats influence solar heating at the surface, with black areas of a coat
having greater surface temperatures than white areas in strong sunshine (Cena & Clark, 1973;
Benesch & Hilsberg, 2003). This is clearly seen in infrared images of zebras that show black
stripes to be more than 10 °C warmer than white strips in full sun (Fig. 1). The temperature
pattern does not reflect underlying circulation or large differences in emissivity as the tem-
perature pattern almost disappears after a few minutes in the shade (Fig. 2). Even where solar
radiation is excluded care should be taken to use enclosures that have wall temperatures close
to air temperature to avoid additional radiative heating and avoid small enclosures that
reflect significant amounts of thermal radiation from the animal.

Surprisingly, there have been relatively few comparisons between IRT and solid tempera-
ture probes. In a study of a rabbit pinna, Mohler & Heath (1988) showed that although
thermocouple measurements gave the same trends in surface temperature, thermocouples
consistently recorded higher temperatures when the pinna was vasodilated and recorded
lower temperatures when vasoconstricted. The added value of IRT is its ability to measure
easily the spatial variation in surface temperature and therefore produce more accurate
temperature records of whole body regions.

The surface temperature of a mammal will not only be influenced by its skin temperature
but by the thickness, density and quality of hair covering different parts of the body and this
may differ between individuals and vary due to seasonal moult. Some veterinary studies on
horses have controlled for this by shaving small sections of hair from limbs in order to
determine the temperature of the underlying skin surface (Holah, 1995). This is not feasible
or indeed desirable for most investigations. Studies should therefore take into account these
sources of variation most easily by following the same individual throughout experiments or
by sampling a large group of individuals to account for this variation.
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In order to obtain accurate surface temperature measurements a surface emissivity value is
a required parameter for infrared imaging systems. Bare skin has an emissivity of 0.98 and the
emissivity of dry fur is relatively uniform in mammals, in the range 0.98–1.0 (Monteith &
Unsworth, 1990). The emissivity of the coat can also be changed by dirt or other materials
(e.g. soil = 0.93–0.96 or water = 0.96, Campbell & Norman, 1998). This can be easily
addressed with captive animals by brushing or cleaning coats prior to measurement. Since
radiative heat transfer scales linearly with emissivity and as surface temperature scales to the
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(a)
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Fig. 2. Photograph (a) of Grant’s
zebra with corresponding infrared
image (b) after 5–10 min in the shade
of a tree. The temperature profile L1
displayed in the graph below (c)
shows the variation in temperature
across the body, with black stripes on
average less than 2 °C warmer than
white striped areas of the coat. Mean
air temperature = 27.4 °C, relative
humidity = 45%, wind
speed = 0.6 ms-1 and solar radiation
was not recorded.
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power of four, these small differences in emissivity can be shown by calculation to account for
less than 0.5 °C difference at typical mammalian coat temperatures. In this case, computer
software for image analysis can be useful in providing error analysis by simply changing the
emissivity of different regions. Alternatively, the temperature of fur with and without dirt/
water can be measured to exclude this source of variation.

Temperature errors associated with alterations in the emissivity of a wet coat are small in
comparison to changes in coat temperature due to evaporative cooling. This is pertinent for
studies on aquatic mammals or animals wet by precipitation in natural conditions. Wetting
leads to an apparent uniformity in surface temperature due to the retention of water in the
coat. In addition, the greater thermal conductivity of water means that heat may be rapidly
conducted from warm parts of the body, particularly as aquatic mammals are seen to leave
the water. Both these factors may obscure the variation in underlying skin temperature. This
can be seen in an image of an adult grey seal recently hauled out from a seawater pool in
captivity, where the temperature of the body corresponds to the temperature of seawater
trapped in the fur (Fig. 3). Care should be taken therefore to ensure that animals are kept dry
or in the case of aquatic mammals, the period of time out of water is standardized. The
influence of wetting may therefore be problematic for studies in the field when accurate
temperature measurements are required. One way to correct for this would be to first
determine rates of drying from animals in captivity (Mauck et al., 2003) or to use heat
transfer models in the laboratory to determine the relationship between surface temperature
and wetting (e.g. McArthur & Ousey, 1994).

Wet environments are not usually a problem for most IR imaging systems because of the
environmental protection/waterproofing of these devices to high industrial standards.
However, water on the lens due to rain or spray is a potential difficulty for accurate temperature
measurements in the field. Pabst et al. (2002) took images from a boat and therefore covered
the lens with polyethylene film and recalibrated the temperature measurements. Similarly,
Tattersall & Milsom (2003) took images through a polyethylene ‘window’ to take images of

5.0

20.0 °C

10

15

FLIR Systems

Fig. 3. Infrared image of female adult grey seal recently hauled out from a seawater pool (background) in
captivity. Note that most of body is at uniform surface temperature corresponding to the temperature of
seawater. The head is warmer than the body trunk as the seal held its head above water prior to leaving the
pool. A small temperature logger for recording stomach temperature is also visible on the centre of the
back. Air temperature = 16.2 °C.
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animals in a metabolic chamber. This is possible over a limited range of temperatures, typical
in animal studies but it should be remembered that this additional coating will alter the spectral
sensitivity of the device.

The detection of radiation by infrared cameras means that curved surfaces are subject to
detection errors compared to flat surfaces. This gives rise to a cool edge effect seen on many
images of animals. For a surface with emissivity of 0.98, the associated temperature error has
been shown to be independent of viewing angle up to about 30° but increased from 0.5 to 3 °C
at 30–70° and was greater than 4 °C at angles above 70° (Watmough, Fowler & Oliver, 1970;
Clark, 1976). If necessary, this can be overcome using a composite image produced from
several images taken from different positions.

FUTURE DIRECTIONS
Developments in technology have meant that infrared imaging devices are now the size of
conventional video cameras or smaller and it is relatively easy to capture and store high-
resolution thermal images in single image or video format. In the past, IR imaging systems
relied on liquid nitrogen cooled detectors that made field studies difficult. Imaging systems
nowadays have electronically cooled detectors allowing them to be easily used in remote
areas. Custom written software is also available that allows rapid image analysis and
summary statistics. Lower cost devices <£10k compared with more advanced systems costing
£30–40k with similar temperature resolution (�0.1 °C) are now becoming available and
therefore there are future opportunities for using IRT in mammal research.

The non-invasive nature of this technique will continue to provide the basis of future
applications and previous studies show that IRT can be used to answer many interesting
research questions. Unique opportunities now exist to examine thermoregulation of wild
mammals in natural conditions. By combining measurements of surface body temperature
with measurements of internal body temperature using implanted temperature loggers or
other physiological parameters such as heart rate (e.g. Butler et al., 1995), we will more fully
understand thermal responses of animals to a range of environmental conditions. Bakken
et al. (2005) have shown in birds that by removing a very small section of plumage to reveal
the skin temperature, cloacal temperature could be estimated to within 1 °C. Although this is
subject to some error, it does provide a method of estimating internal body temperature
without the need for internal temperature loggers that has not often been considered in IRT
applications with mammals. Preliminary reports also suggest that eye temperature recorded
by IRT can be used to determine rectal and vaginal measurements in domestic animals (Sykes
et al., 2006; Willard, Vinson & Godfrey, 2006). If this method can be substantiated further,
then it may provide opportunities of monitoring internal temperature non-invasively in
captive experiments and field studies.

Previous studies have used surface temperature measurements to determine rates of heat
loss and thereby estimate metabolic heat production (e.g. Williams, 1990). As yet, there has
been no evaluation of how accurate these estimates are likely to be for domestic or free
ranging mammals. IRT together with indirect calorimetry could validate heat transfer models
that estimate metabolic costs of mammals. This has indeed been successfully carried out on
captive birds where the metabolic power of flight determined by heat transfer modelling
agreed with measurements using doubly labelled water and mask respirometry (Ward et al.,
1999, 2004). Surprisingly, there have been relatively few IRT studies examining changes in
surface temperature during exercise in mammals. Surface temperatures could parameterise
biophysical models of heat loss that investigate how exercise metabolism compensates for
thermoregulatory costs and determine energy costs associated with locomotion or foraging
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behaviour. However, it should be remembered that although IRT can be used to derive
reasonable estimates of heat loss by convection and radiation from the surface of animals,
heat losses through respired gases (particularly by latent heat loss) must also be considered in
order to estimate total heat loss from the organism.

The absolute accuracy of metabolic rate derived from IRT measurements may be relatively
uncertain unless cross-calibration is made with existing metabolic methods as described
above for birds. However, IRT is of great value in determining relative estimates of metabolic
rate, particularly where natural behaviour does not occur in small metabolic chambers. Ward
& Slater (2005) used this approach to estimate the increased metabolic cost of bird song by
comparing heat loss between singing and non-singing birds in captivity. This approach could
also be used to derive relative energy costs of a wide range of behaviours in the wild.

It is likely that IRT will continue to be a useful tool for the diagnosis of disease and injury
in domestic and zoo animals, used in conjunction with existing veterinary procedures (Head
& Dyson, 2001; Webbon, 2002). The development of small handheld instruments might soon
allow these to be standard pieces of equipment for vets. Given concerns about infectious
diseases among farm animals or within wild animal populations, IRT will be useful for early
detection of disease, if further clinical trials can be undertaken. This may be achieved by
remote monitoring systems such as those outlined by Stewart et al. (2005) that are recording
the eye temperature of cattle with an automated system. The requirement of studies such as
these will be to demonstrate convincingly that surface temperatures strongly correlate with
the occurrence of infection. One of the most exciting opportunities in this area will be to
extend veterinary applications of thermal imaging to study the health of wild mammal
populations. Although an earlier attempt to diagnose disease in wild mammals with IRT was
unsuccessful because of the distances involved (Arenas et al., 2002), this may not apply in all
cases and more appropriate choice of camera lenses may make distance work feasible.

The use of IRT for population monitoring is likely to be limited as much by the cost of
aircraft or ship time as it is by the cost of imaging systems. However, surveys on foot or by
vehicle will be easier with the highly portable imaging systems. IR imaging systems are likely
to be particularly useful for monitoring nocturnal species. There is already considerable
interest in using IRT to monitor large colonies of bats (Sabol & Hudson, 1995; Hristov, Betke
& Kunz, 2005; Reichard, Frank & Kunz, 2005). For this purpose, automated image recog-
nition systems provide the opportunity to monitor large colonies, not easily undertaken using
traditional methods.

CONCLUSION
Infrared thermography has been successfully used in studies of thermal physiology, disease
and population monitoring of captive and wild mammals since the 1960s. Its main advantage
is that it is a non-invasive technique for measuring radiative surface temperature and there-
fore it can be either used to infer underlying circulation that is related to physiology,
behaviour and disease or simply to detect a warm body against a cool background. The major
limitation of this technique is that radiative surface temperature is also influenced by solar
radiation, wetting and evaporation. For accurate temperature measurements in the field, it is
therefore best suited for studies at night or in situations where animals experience low solar
irradiances. Where environmental conditions prevent accurate temperature measurement
comparative studies can still be undertaken provided conditions are equivalent between
groups. For studies in captivity, experimental design should also consider the radiative
environment of housing where measurements are made and also how underlying physiologi-
cal responses and disease may influence surface temperature patterns. Nevertheless, if these
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factors are taken into account, the increased portability and reduced cost of IR imaging
systems provide further opportunities for a range of studies that wish to measure surface
temperature or detect animals non-invasively.
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